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ABSTRACT

Two lignocellulosic materials with different lignin contents (18 and

42%wt) and pure lignin (PL) were evaluated for their effectiveness in

binding cadmium from dilute solutions in various concentrations.

Maximum sorption capacities (Xm), determined from equilibrium

isotherms by applying the Langmuir model, indicated that PL

(Xm ¼ 48.3mg/g) and the sample with the larger lignin content

(Xm ¼ 22.2mg/g) showed a reasonable ability to uptake cadmium. An

increasing relationship between Xm and the sample’s lignin content was
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found, considering the tested materials together with others evaluated

earlier under identical conditions. Pure lignin attained the highest value.

Accordingly, the lignin content of lignocellulosic materials appears as an

indicator of their ability to uptake cadmium. It could facilitate their

screening for potential use as alternative cadmium sorbents from dilute

wastewater. The effects of the sample’s dose and the solution pH on

cadmium uptake also were investigated.

Key Words: Alternative sorbents; Lignocellulosic wastes; Heavy metals

removal; Wastewater treatment.

1. INTRODUCTION

Concern about the hazardous effects caused by the presence of heavy

metals in aquatic environments in concentrations exceeding the admissible

limits has induced the search for cost-effective solutions to mitigate water

pollution. In the last few years, the feasibility of using low-cost, easily

available materials for metals uptake from wastewater has been investigated to

seek alternative sorbents that can be used more economically on a large scale

than conventional ones.

Materials mostly examined include nonliving biomasses of yeast,

bacteria, fungi, and algae,[1–4] as well as peat.[5,6] They are shown to be

capable of concentrating metals from aqueous solutions, accumulating them

within their structures.

Other cheap materials less explored as sorbents include lignocellulosic

wastes generated from processing of agricultural products, food, and/or
wood, either raw or chemically/thermally modified at low temperatures.[7 –11]

Many of them also have been demonstrated to be effective in binding

several metals. Use of lignocellulosic wastes, as alternative sorbents, may

constitute an attractive option for wastewater treatment because of their low

cost, abundance, and renewable character. However, information on their

effectiveness in removing trace metals from wastewater is still limited and,

therefore, a thorough knowledge to predict the potential metal-binding ability

of lignocellulosic materials in terms of their chemical features has not yet been

attained.

Some results earlier obtained in our laboratory[12] suggested that the

ability of lignocellulosic materials to uptake metals from dilute solutions

could depend on their lignin content. Within this context, in the present work,

two raw lignocellulosic materials with different lignin contents and pure lignin

(PL) were purposefully selected and examined for their metal sorption ability,

to gain insight into the incidence of the content of lignin composing this type
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of material on their performance as alternative metal sorbents from

wastewater. An activated carbon (AC) with good metal-sequestering ability

also was used for the sake of comparison. Dilute aqueous solutions of Cd(II)

ion were used as models of low-metal concentration wastewater. Cadmium

removal is of primary interest because of cadmium’s acute toxicity and its

increasing discharge into the environment.[13]

The effect of the samples’ doses on the ability of the selected materials to

sequester cadmium was first examined from uptake experiments conducted at

fixed, preestablished equilibrium conditions. The influence of the solution pH

on equilibrium cadmium uptake also was investigated for all the samples.

Equilibrium isotherms were further determined and modeled to assess

sorption capacities of Cd(II) ions for the selected samples.

2. MATERIALS AND METHODS

Lignocellulosic materials used were seed hulls (SDH) obtained from an

easy-to-grow herbaceous plant (Mirabilis jalapa) and an agricultural waste,

stems from yerba mate leaves (YLS). Yerba mate is a widely cultivated

evergreen tree (Ilex paraguariensis), which belongs to the family Aqui-

foliaceae. The leaves of this tree are processed to prepare a traditional herbal

tea beverage, very popular in Argentina, Paraguay, and southern Brazil. Large

quantities of the leaves’ stems are generated as waste from industrial

processing. The YLS used were supplied by Mate Larangeira Co. (Province of

Misiones, Argentina).

The SDH and YLS, without any further treatment, were ground, milled,

and screen sieved. Fractions of particle diameter in the range 100–250mm

were used for samples’ characterization and cadmium uptake experiments.

Proximate analyses of the samples were performed according to ASTM

(American Society of Testing and Materials) standards. An elemental analyzer

(Carlo Erba model EA 1108, Carlo Erba Strumentazione, Milan, Italy) was

used to assess their elemental compositions. In addition, contents of the major

biopolymers constituents of the samples, i.e., holocellulose (cellulose þ

hemicellulose) and lignin, and solvent extractive components were deter-

mined by applying the TAPPI (Technical Association of the Pulp and Paper

Industry) standard methods (T204 om-88, T222 om-88). Results are reported

in Table 1.

Furthermore, total polar or acidic surface oxygen functional groups

(TOFG) of the lignocellulosic samples, reportedly influencing metal uptake by

various biosorbents,[4] were quantified. These groups may include carbonyls,

phenols, lactones, and/or carboxyl acids. They were determined by titration

with sodium ethoxide. This base is the same one used in the Boehm’s method,
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which is widely applied to ACs and other carbonaceous materials for the same

purpose. The amount of base uptake by each sample is considered as an

approximate comparative indication of the TOFG of the samples. Details of

the experimental procedure have been reported earlier.[14] Mean values of the

TOFG, expressed as milliequivalents per gram of sample, also are listed in

Table 1.

Analytical grade lignin (PL) from Aldrich Chemical Co., and a prepared

AC also were used in cadmium uptake assays. The AC was obtained by

phosphoric acid activation of the stems from a fast-growing grass (Arundo

donax L.) and characterized following the procedures reported in previous

works.[14,15] Main features of the AC were BET (Brunauer, Emmett and

Teller) surface area of 1194m2/g, total pore volume of 1.03 cm3/g, and
TOFG of 3.3meq/g.

For the sorption experiments, a stock cadmium solution (1000mg/L) was
prepared by using analytical grade Cd(NO3)2 . 4H2O (Carlo Erba) and distilled

water. Standard solutions of cadmium concentrations ranging between 5 and

100mg/L were obtained by dilution of the stock solution.

The influence of the sample’s dose on cadmium ion uptake was first

investigated under fixed preestablished equilibrium conditions. For these

experiments, different preweighed amounts of each sample (0.02–1 g) were

Table 1. Chemical characteristics of the lignocellulosic samples.

Sample YLS SDH ADS[12] BNS[12] PRS[12] SCB[12]

Proximate analysisa (wt%)

Volatile matter 72.0 56.8 71.3 76.1 75.4 84.9

Fixed carbon 24.9 39.5 24.1 22.2 22.1 12.3

Ash 3.1 3.7 4.6 1.7 2.4 2.8

Ultimate analysisb (wt%)

Carbon 46.4 48.3 49.3 50.0 47.1 46.9

Hydrogen 5.9 6.1 6.0 5.8 6.2 5.6

Nitrogen 1.2 1.4 0.3 0.7 0.4 1.2

Oxygenc 46.5 44.2 44.4 43.5 46.3 46.3

Lignocellulosic

compositiond (wt%)

Holocellulose 82 58 77 43 72 72

Lignin 18 42 23 57 28 28

TOFG (meq/g) 1.0 2.5 1.1 2.7 1.5 1.8

aDry basis.
bDry and ash free basis.
cEstimated by difference.
dDry and extractive-free basis.
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contacted with 100mL of 20mg/L cadmium solutions in capped glass flasks.

The pH of the suspensions was 5.8. A pH-meter (Orion model 9107WP, Orion

Research Inc., Beverly, Massachussetts, USA) was used for pH measurements.

No buffer was added, based on results published in previous works that have

reported optimum cadmium uptake for pH . 4.[16,17]

The capped glass flasks containing the suspensions were kept in a shaker

at constant temperature (T ¼ 288C+18C) for 7 hr. From preliminary

experiments conducted for different prolonged periods, it was verified that

this contact time was long enough to ensure equilibrium attainment for all the

investigated systems. To check for any significant drift during the sorption

tests, the pH was controlled at the start and at the end of each experiment.

Almost no variation was detected, except for the experiments using the larger

sample doses. Nevertheless, even in these cases, pH values were maintained

within +0.5 units. Afterward, the suspensions were filtered through 0.45-mm

membranes. Equilibrium cadmium concentrations were determined in the

filtrates by using a selective ion electrode (Cole-Parmer 27502-07, Cole-

Parmer Instrument Co., Vernon-Hills, Illinois, USA), with a reproducibility of

+2% and a lower detection limit of 0.05 ppm.

The effect of the solution pH on the equilibrium cadmium uptake for each

sample was further examined by using 20mg/L cadmium solutions and

sample doses of 0.3 g/100mL, under otherwise constant conditions. The pH

of the suspensions was adjusted to values in the range of 1–7 by adding drops

of nitric acid or sodium hydroxide solutions. Sorption experiments were then

performed following the procedure described above.

Equilibrium isotherms for all the samples were determined by using doses

of 0.3 g/100mL, as assessed from the experimental dosage curves and

solutions of cadmium concentrations varying from 5 to 100mg/L. The

suspensions at pH 5.8 were shaken at constant temperature (T ¼ 288C+18C)

up to equilibrium, filtrated, and further analyzed for Cd(II) ions concentration

as already detailed.

Duplicate experiments were carried out for all the investigated systems,

differences between replicate experiments being less than 3% in all the cases.

Average values were used. Metal and sorbent free blanks were also used for

control in all the experiments.

3. RESULTS AND DISCUSSION

3.1. Effect of Sorbent Dose

Figure 1 shows the effect of varying samples’ doses on the equilibrium

metal uptake for the tested materials when using cadmium solutions of
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20mg/L. Percentages of Cd(II) ions sorbed at equilibrium are represented as

a function of the samples’ doses in the figure.

As expected, for a fixed metal initial concentration, increasing the

sample’s dose enhanced the percentages of cadmium uptake. Although both

lignocellulosic samples showed appreciable cadmium uptakes, noticeable

differences can be seen in Fig. 1. The SDH were more effective in capturing

cadmium than the YLS over the whole dose range. The maximum cadmium

uptake for the YLS did not exceed 80% even for the largest dose used.

The SDH exhibited a quite similar behavior to PL and the AC for doses

larger than 0.2 g/100mL, whereas differences in their sorptive behavior

became more evident at low doses.

3.2. Influence of the Solution pH

The effect of the solution pH on the equilibrium cadmium uptake by the

samples is illustrated in Fig. 2, for a cadmium concentration of 20mg/L. As
seen in the figure, cadmium sorption was strongly dependent on the solution

pH. Cadmium uptake by PL and AC showed a sharp increase from negligible

or very low to maximum values in the narrow pH range of 2.5–4. For the

Figure 1. Effect of the sample dose on the equilibrium cadmium uptake by the SDH,

YLS, PL, and the prepared AC. C0 ¼ 20mg/L; pH ¼ 5.8; T ¼ 288C; t ¼ 7 hr. Solid

lines only to guide the eyes.
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lignocellulosic samples, the uptake of cadmium ions increased more gradually

with pH variation from 1 up to 7.

At low pH, the unfavorable high concentration of protons in solution and

electrostatic repulsion forces between cadmium cations and the positively

charged surface of the samples appear to predominate, affecting, detri-

mentally, the uptake of cadmium by all the samples. Differences observed at

pH , 2.5–3 may be attributed to electrostatic interactions of Cd(II) ion and

sample’s surface of different strength, which could arise from different kinds

and/or amounts of polar or acidic functional groups present on the sample’s

surface. The results suggest stronger repulsion interactions for PL and AC.

They could explain the almost negligible cadmium uptake by these samples

at the lower pH values, compared with those determined for the SDH and

YLS. As the solution pH increases, repulsion interactions seem to be reduced

and the extent of cadmium uptake increases for all the samples, depending on

their specific features, likely due to a ion-exchange mechanism between the

surfaces’ protons and cadmium cations. Similar trends also have been

reported for the pH effect on cadmium ion sorption by ACs,[16,17] peat,[18]

and certain biomasses.[19]

Figure 2. Influence of the solution pH on the equilibrium uptake of cadmium by

the SDH, YLS, PL, and the prepared AC. C0 ¼ 20mg/L; sample dose ¼ 0.3 g/
100mL; T ¼ 288C; t ¼ 7 hr. Solid lines only to guide the eyes.
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3.3. Equilibrium Sorption Isotherms

The Langmuir model (LM) for adsorption equilibrium was applied to the

experimental data obtained for the uptake of Cd(II) ions by all the samples:

Ce=qe ¼
1

(XmK)
þ

Ce

Xm

(1)

Ce and qe in Eq. (1) denote the equilibrium metal ions concentration and the

amount of metal ions adsorbed at equilibrium per sample mass unit,

respectively. Xm and K are parametric constants related to the maximum

adsorption capacity and the affinity of the metal to the sorbent, respectively.

The ability of the LM to describe the experimental data is illustrated in Fig. 3.

As observed, the LM succeeded in representing properly all the examined

systems with high correlation coefficients (r2 . 0.995). The LM parameters

estimated by regression analysis are listed in Table 2. They showed significant

differences depending on the material used.

Differences in the K values indicate that Cd(II) ions interact with each

material differently. These values were used to calculate the dimensionless

separation factor RL, defined as RL ¼ 1/(1 þ K C0).
[20] RL between 0 and ,1

was obtained for all the systems, pointing to a favorable uptake of cadmium

ion in all the cases.

Figure 3. Langmuir plots for equilibrium cadmium uptake by the SDH, YLS, PL, and

the AC: comparison between the experimental data (points) and model predictions

(solid lines). C0 ¼ 5–100mg/L; sample dose ¼ 0.3 g/100mL; pH ¼ 5.8; T ¼ 288C;

t ¼ 7 hr.
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As seen in Table 2, the Xm value estimated for PL was higher than those

obtained for the SDH and YLS. Nevertheless, it was rather lower than the Xm

for the AC, possibly because of its highly developed pore structure and large

content of TOFG, already reported in Section 2, the latter being recognized as

playing a key role on metal adsorption on ACs.[14,21]

Table 1 summarizes chemical characteristics of the lignocellulosic

samples tested earlier[12] as potential biosorbents of cadmium ions, by using

the same methods depicted before. The tested samples were sawdust from A.

donax L. (ADS) and Prosopis ruscifolia (PRS), Sugarcane bagasse (SCB),

and Brazil nutshells (BNS). Table 2 lists the LM parameters for these samples,

obtained from cadmium isotherms, applying identical experimental conditions

and methodology as the ones used in this work. From the data reported in

Tables 1 and 2 for all the lignocellulosic samples tested, it appears that the

cadmium uptake, as judged by the calculated Xm values, increases, in general,

with the TOFG content. This trend and the results for the incidence of the

solution pH on Cd(II) ion uptake suggest that among the different possible

mechanisms responsible for metal uptake,[2] ion exchange or chelation

apparently prevails.

The Xm estimated for the PL, SDH, and YLS also was found to be in

accordance with their lignin contents (Tables 1 and 2). Figure 4 illustrates the

Xm values obtained for the SDH and YLS, together with those published

earlier involving other lignocellulosic materials—Cd(II) ion systems[12] as

a function of the samples’ lignin content. An increasing relationship bet-

ween Xm and the lignin content of the samples can be noticed in Fig. 4.

It indicates that the lignocellulosic materials with larger lignin content have a

greater ability to uptake cadmium. Lignin, constituting the cells walls of

lignocellulosic materials together with cellulose and hemicellulose, is the

Table 2. Langmuir model parameters estimated for the

investigated systems.

Sample Xm (mg/g) K (L/mg)

Pure lignin 48.3 0.12

Seed hulls 22.2 0.34

Yerba leaves stems 4.8 0.25

Arundo donax stems[12] 5.7 0.70

Sugarcane bagasse[12] 10.7 0.25

Prosopis ruscifolia sawdust[12] 7.4 1.01

Brazil nutshells[12] 19.4 1.32

Activated carbon 57.3 0.36
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major noncarbohydrate component. It is a complex, cross-linked three-dimen-

sional oxygenated polymer based primarily on three different phenyl-propane

units in various proportions, i.e., guaicyl, syringyl, and p-hydroxyphenyl

monomeric units.[22] Hence, it appears that phenyl-propane units composing

lignin provide dominantly surface functional groups for cadmium uptake by

the lignocellulosic materials, regardless of other specific features of their cell

walls. Surface “free” functionalities on lignin comprise hydroxyl groups,

either alcoholic –OHs on the linear chains or the phenolic –OHs on the

aromatic groups of the building units, methoxyls (–OCH3) attached to the

aromatic rings, and aldehydes and ketones on the linear chains. Thus, although

additional complementary techniques should be required to identify specific

functional groups responsible for metal binding,[2,23] the increasing trend

found for Xm with the TOFG and lignin contents seems to indicate that

phenolic groups, which distinguish lignin structure from that of cellulose and

hemicellulose, could be the functionalities mainly involved in cadmium

uptake. In addition, the apparent easier access of the metal species to lignin in

the cell wall of lignocellulosic materials compared with cellulose and

hemicellulose could also favor, preferentially, the uptake of cadmium.

Figure 4. Influence of lignin content on the estimated maximum sorption capacity

(Xm) of cadmium for the lignocellulosic samples: ADS, BNS, PRS, SCB, SDH from

M. jalapa, and YLS., PL. C0 ¼ 5–100mg/L; sample dose ¼ 0.3 g/100mL;

pH ¼ 5.8; T ¼ 288C; t ¼ 7 hr. Solid line only to guide the eyes.
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4. CONCLUSIONS

The content of lignin composing lignocellulosic materials appeared to

have a predominant incidence on their performance in the uptake of cadmium

ion from dilute aqueous solutions. Though more data should be needed to

attain a completely definite correlation, the present results point to the lignin

content of lignocellulosic materials as a proper, indicative tool of their

potential cadmium-sorption capability, at least as a first approximation.

Accordingly, it might provide useful information to facilitate the screening of

lignocellulosic materials for their use as alternative cadmium sorbents from

dilute wastewater, contributing to reduce partially tedious experimental work

involved in screening tests.
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